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The exploration of this study is devoted to investigate the helical effects for 
the flow of fractionalized viscoelastic fluid in helically moved cylinder. The 
cylinder starts to oscillate and rotate about its axis when 𝑡 = 0+ with 
velocities. By applying mathematical transforms (Hankel and discrete 
Laplace transforms) exact solutions are found out for velocities and shear 
stresses. The general solutions satisfy initial conditions 𝑢1(𝑟, 0) = 𝑢2(𝑟, 0) =
𝜕𝑢1(𝑟,0)

𝜕𝑡
=

𝜕𝑢2(𝑟,0)

𝜕𝑡
= 0, as well as boundary conditions 𝑢1(𝑅, 𝑡) =

𝑅Ω𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡)  or  𝑐𝑜𝑠 (𝜔𝑡), and 𝑢2(𝑅, 𝑡) = 𝑈𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡/𝑐𝑜𝑠𝜔𝑡. The 
solutions are presented in terms of series form and expressed in terms of 

generalized Fox H-function 𝐻𝑗,𝑘+1
1,𝑗 (𝑍). Special cases have been traced out for 

non-Newtonian fluids (fractional and ordinary Second Grade, fractional and 
ordinary Newtonian fluid and ordinary Maxwell Fluid). Three types of fluid 
models are presented for rheological comparison, namely (i) fractional and 
ordinary Maxwell fluid, (ii) fractional and ordinary second grade fluid and 
(iii) fractional and ordinary Newtonian fluid. Finally, the rheology is 
influenced with distinct parameters and material limitations for helically
moved cylinder by depicting graphical analysis.
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1. Introduction

*The practical applications of flow of non-
Newtonian fluids lie among the modern industries. 
Such industries have diverted the attention of 
engineers, mathematicians and scientists for the 
solutions of flow problems of non-Newtonian fluids. 
Various rheological materials like polymer melts, 
suspensions, clay coatings, drilling mud, elastomers, 
certain greases and oils, and numerous emulsions 
are considered as non-Newtonian fluids. In order to 
exhibit certain characteristics of non-Newtonian 
fluids there is not at least single constitutive 
equation, this is due to complex behavior of fluid. 
The rheology of non-Newtonian fluids has distinct 
characteristics in fermentation, boiling, polymer 
processing, molten plastic foam processing, 
composite processing many others (Fetecau and 
Corina, 2005; Fetecau et al., 2007; Erdogan and 
Imrak, 2005; Chen et al., 2004; Hayat et al., 2004a; 
2004b; Abro and Shaikh, 2015). Nowadays, 
viscoelastic fluid (Maxwell model) is acknowledged 
by many scientists and engineers in several 
engineering and industrial processes. This is due to 

* Corresponding Author. 
Email Address: kashif.abro@faculty.muet.edu.pk (K. A. Abro)
https://doi.org/10.21833/ijaas.2017.010.014 
2313-626X/© 2017 The Authors. Published by IASE. 
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

involvement of viscoelastic material, for instance, 
glues, paints, melts of polymers, asphalts, biological 
solutions, colloids and several others. In 
continuation, Hayat et al. (2006) investigated flow 
problem for second grade fluid in cylindrical 
geometry in which they traced out analytical 
solutions. Analytical solutions have been obtained by 
Akl (2014) on the structure of stretching cylinder for 
unsteady boundary flow. Altintas and Ozkol (2015) 
analyzed non-heated and heated cases in circular 
pipes for magnetohydrodynamic flow. Sulochana and 
Sandeep (2016) worked at different temperature for 
shrinking cylinder with heat transfer behavior of 
magnetohydrodynamics. Masood et al. (2016) 
investigated a stagnation-point flow with the 
nonlinear radiative on Sisko fluid over stretching 
cylinder. They established numerical solutions via 
shooting method through forth order Runge-Kutta 
method by transforming governing partial 
differential equation of stretching cylinder. They also 
explored nonlinear Rosseland approximation and 
effects of thermal radiation. Jamil et al. (2011) 
analyzed longitudinal and torsional constantly an 
infinite accelerated cylinder with for second order 
liquid. They found exact analytical solutions for 
shear stress and velocity profile. Mahmood et al. 
(2010) worked on the annular region of cylinders for 
generalized second order liquid with oscillatory 
flow. They utilized integral transform to investigate 
some exact analytical solutions with few limiting 
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cases. Siddique and Vieru (2009) examined circular 
cylinder for rotational fluid of second order liquid 
and investigated analytical study in cylindrical 
configuration. Abdulhameed et al. (2016) perceived 
oscillating flow in circular cylinder for heat 
performance and compared due to different 
pressure waveforms. Sulochana and Sandeep (2016) 
studied heat transfer and momentum behavior of 
few nanoparticles embedded towards porous 
cylinder. They obtained numerical solutions by 
employing Runge-Kutta Felhberg technique. Of 
course the list of study on circular cylinder for 
viscoelastic fluid can be continuous but we end it 
with some recent references (Shah and Qi, 2010; 
Wang and Xu, 2009; Nazar et al., 2010; Fetecau et al., 
2010; Malekzadeh et al., 2011; Abro and Solangi, 
2017; Muhammad et al., 2015; Abro, 2016; Rostami 
et al., 2014; Rashidi et al., 2014; Rashidi et al., 2012; 
Rashidi et al., 2015). Motivating by above studies, 
our purpose is to investigate the helical effects for 
the flow of fractionalized viscoelastic fluid in 
helically moved cylinder. The cylinder starts to 
oscillate and rotate about its axis when 𝑡 = 0+ with 
velocities. By applying mathematical transforms 
(Hankel and discrete Laplace transforms) exact 
solutions are found out for velocities and shear 
stresses. The solutions are presented in terms of 
series form and expressed in terms of generalized 

Fox H-function 𝐻𝑗,𝑘+1
1,𝑗 (𝑍). Special cases have been 

traced out for non-Newtonian fluids (fractional and 
ordinary Second Grade, fractional and ordinary 
Newtonian fluid and ordinary Maxwell Fluid). Three 
types of fluid models are presented for rheological 
comparison, namely (i) fractional and ordinary 
Maxwell fluid, (ii) fractional and ordinary second 
grade fluid and (iii) fractional and ordinary 
Newtonian fluid.. Finally, the rheology is influenced 
with distinct parameters and material limitations 
among two helically moved cylinders by depicting 
graphical analysis.  

2. Mathematical modeling of helices 

The Cauchy stress tensor T is an incompressible 
Maxwell fluid is given (Fetecau et al., 2010; Abro, 
2016) 

 

T = −𝑝I + S, S + Λ(Ṡ − LS − SLT) = 𝜇A,                    (1) 
 

where – 𝑝I, S, L, A = L + LT, 𝜇, Λ, 𝑇 are the 
indeterminate spherical stress due to the constraint 
of incompressibility, the extra-stress tensor, velocity 
gradient, first Rivilvin Ericksen tensor, dynamic 
viscosity, relaxation time, transpose operation. This 
Maxwell model can also be characterized for 
Newtonian fluid by letting Λ → 0. The microscopic 
polymers and their predictions of the normal-stress 
differences are also characterized by this model. Due 
to this significance, this model is useful to analyze 
dilute polymeric fluids in viscoelasticity. Here 
velocity field is assumed as  
 
𝑢 = 𝑢(𝑟, 𝑡) = 𝑢1(𝑟, 𝑡)𝑒𝜃 + 𝑢2(𝑟, 𝑡)𝑒𝑧,    S = S(𝑟, 𝑡),             (2) 

where, 𝒆𝜃 and 𝒆𝑧 are unit vectors in the 𝜃 and 𝑧-
direction. For such flows the constraint of 
incompressibility is automatically satisfied. If the 
fluid is at rest up to the moment 𝑡 = 0 then  

 
𝑢(𝑟, 0) = S(𝑟, 0) = 0,                     (3) 

 
and implementing 𝑆𝑟𝑟 = 0 in Eq. 1 then we arrived at 
meaning full equations as defined below 
 

Λ
𝜕

𝜕𝑡
𝜏1(𝑟, 𝑡) − 𝜇

𝜕𝑢2(𝑟,𝑡)

𝜕𝑟
+ 𝜇

𝑢2(𝑟,𝑡)

𝑟
+ 𝜏1(𝑟, 𝑡) = 0,                 (4) 

Λ
𝜕

𝜕𝑡
𝜏2(𝑟, 𝑡) − 𝜇

𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
+ 𝜏2(𝑟, 𝑡) = 0,                     (5) 

 

here, 𝜏1 = 𝑆𝑟𝜃 and 𝜏2 = 𝑆𝑟𝑧 are the shear stresses. 
While, due to nonappearance of pressure gradient, 
balance of linear momentum and ignoring body the 
forces lead the following equation for symmetry of 
rotation as 
 

𝜌
𝜕𝑢1(𝑟,𝑡)

𝜕𝑡
−

𝜕𝜏1(𝑟,𝑡)

𝜕𝑟
−

2𝜏1(𝑟,𝑡)

𝑟
= 0,                      (6) 

𝜌
𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
−

𝜕𝜏2(𝑟,𝑡)

𝜕𝑟
−

𝜏2(𝑟,𝑡)

𝑟
= 0,                    (7) 

 

eliminating 𝜏1 and 𝜏2 from Eqs. 4-7, we arrive at the 
equations governs the helical flow Fetecau et al. 
(2008) 
 
𝜕𝑢1(𝑟,𝑡)

𝜕𝑡
+ Λ

𝜕

𝜕𝑡
(

𝜕𝑢1(𝑟,𝑡)

𝜕𝑡
) − 𝜈 (

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
) 𝑢1(𝑟, 𝑡) =

0,    𝑡 > 0,                        (8) 
𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
+ Λ

𝜕

𝜕𝑡
(

𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
) − 𝜈 (

𝜕2

𝜕𝑟2
+

𝜈

𝑟

𝜕

𝜕𝑟
) 𝑢2(𝑟, 𝑡) = 0,    𝑡 > 0,  

                      (9)  
 

where 𝜈 =
𝜇

𝜌
 is the kinematic viscosity of the fluid. 

Meanwhile, we consider here fractional Maxwell 
fluid at rest in an oscillating circular cylinder of 
radius 𝑅. At time 𝑡 = 0+ the cylinder begins to rotate 
about its own axis (𝑡 = 0) with the angular velocity 
𝛺sin (𝜔𝑡) 𝑜𝑟 𝛺cos (𝜔𝑡) and oscillates along the same 
axis with 𝑈𝑠𝑖𝑛(𝜔𝑡)  𝑜𝑟  𝑈𝑐𝑜𝑠(𝜔𝑡). Due to shear the 
fluid is gradually moved and its velocity being of the 
pattern as in (2), while the governing equations are 
(4-5) and (8-9). Such flow produces helicity, this is 
due to fact that the streamline of helicity are helices 
as shown in Fig. 1. The conditions are:  
 
 Initial condition: 
 

 𝑢1(𝑟, 0) = 𝑢2(𝑟, 0) = 𝜏1(𝑟, 0) = 𝜏2(𝑟, 0) =
𝜕𝑢1(𝑟,0)

𝜕𝑡
=

𝜕𝑢2(𝑟,0)

𝜕𝑡
= 0,                     (10) 

 

 Boundary condition for angular velocity:  
 

𝑢1(𝑅, 𝑡) = 𝑅𝛺𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) 𝑜𝑟 𝑅𝛺𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) , 𝑡 ≥ 0

𝑢2(𝑅, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) 𝑜𝑟 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) ,       𝑡 ≥ 0
, (11) 

 

where 𝐻(𝑡) is Heaviside function. In order to 
develop the governing equations for helical flow (4-
5) and (8-9) in terms of non-integer order derivative, 
we implement the Caputo-fractional operator, we get  
𝜕𝑢1(𝑟,𝑡)

𝜕𝑡
+ Λ𝐷𝑡

𝜒
(

𝜕𝑢1(𝑟,𝑡)

𝜕𝑡
) − 𝜈 (

𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
) 𝑢1(𝑟, 𝑡) =

0,    𝑡 > 0,                     (12) 
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𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
+ Λ𝐷𝑡

𝜒
(

𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
) − 𝜈 (

𝜕2

𝜕𝑟2
+

𝜈

𝑟

𝜕

𝜕𝑟
) 𝑢2(𝑟, 𝑡) = 0,    𝑡 >

0,                     (13) 

Λ𝐷𝑡
𝜒

𝜏1(𝑟, 𝑡) − 𝜇
𝜕𝑢1(𝑟,𝑡)

𝜕𝑟
+ 𝜇

𝑢1(𝑟,𝑡)

𝑟
+ 𝜏1(𝑟, 𝑡) = 0,              (14) 

Λ𝐷𝑡
𝜒

𝜏2(𝑟, 𝑡) − 𝜇
𝜕𝑢2(𝑟,𝑡)

𝜕𝑡
+ 𝜏2(𝑟, 𝑡) = 0,                  (15) 

where, 𝐷𝑡
𝜒

 represent the non-integer order Caputo 
fractional operator defined as (Abro et al., 2016; 
Abro et al., 2017a) 

 

𝐷𝑡
𝜒

𝑢(𝑡) = {

1

Γ(1−𝜒)
∫

𝑢′(𝑞)

(𝑡−𝑞)𝜒
𝑑𝑞

𝑡

0
,             0 < 𝜒 < 1;

𝑑𝑢(𝑡)

𝑑𝑡
 ,                                                𝜒 = 1       

,    (16) 

 
Fig. 1: Geometrical configuration of helecity 

 
3. Solution of the problem 

3.1. Velocity field  

 Case-I: For sine oscillations: Applying Laplace 
transform on Eqs. 12-13 and keeping in mind Eqs. 
10-11, we arrive at 

 

(𝑠 + Λ𝜒𝑠1+𝜒)�̅�1(𝑟, 𝑠) = 𝜈 (
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
−

1

𝑟2
) �̅�1(𝑟, 𝑠),         (17) 

(𝑠 + Λ𝜒𝑠1+𝜒)�̅�2(𝑟, 𝑠) = 𝜈 (
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
) �̅�2(𝑟, 𝑠),                  (18) 

 

where the conditions �̅�1(𝑟, 𝑠) =
𝑅𝛺𝜔

(𝑠2+𝜔2)
 and 

�̅�2(𝑟, 𝑠) =
𝑈𝜔

(𝑠2+𝜔2)
 are to satisfy Eqs. 17-18. 

Employing finite Hankel transform on Eqs. 17-18 
and using Appendix A (A1 and A3) on Eq. 17 and (A2, 
A4) on Eq. 18, we get 
 

�̅�1𝐻(𝑟𝛼 , 𝑠) =
Ω 𝐽2(𝑅𝑟𝛼) 𝜔 𝜈 𝑅2𝑟𝛼

𝑠2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛼
2)+𝜔2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛼

2)
,                  (19) 

�̅�2𝐻(𝑟𝛽, 𝑠) =
𝑈 𝐽1(𝑅𝑟𝛽) 𝜔 𝜈 𝑅 𝑟𝛽

𝑠2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽
2)+𝜔2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽

2)
,                (20) 

 

in order to satisfy imposed conditions, we present 
suitable equivalent forms of Eqs. 19-20 as 
 

�̅�1𝐻(𝑟𝛼 , 𝑠) =
𝛺 𝐽2(𝑅𝑟𝛼) 𝜔 𝑅2

𝑟𝛼(𝑠2+𝜔2)
−

Ω 𝐽2(𝑅𝑟𝛼)𝑅2

𝑟𝛼

𝜔(Λ𝜒𝑠1+𝜒+𝑠)

𝑠2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛼
2)+𝜔2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛼

2)
,  

                    (21) 

�̅�2𝐻(𝑟𝛽, 𝑠) =
𝑈 𝐽1(𝑅𝑟𝛽) 𝜔 𝑅

𝑟𝛽(𝑠2+𝜔2)
−

𝑈𝐽1(𝑅𝑟𝛽)𝑅

𝑟𝛽

𝜔(𝑠+Λ𝜒𝑠1+𝜒)

𝑠2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽
2)+𝜔2(Λ𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽

2)
,   

                    (22) 

applying inverse Hankel transform on Eqs. 21-22 
and using Appendix A (A5) and (A6), we get suitable 
series expansion as  
 

�̅�1(𝑟, 𝑠) =
𝑟𝛺𝜔

𝑠2+𝜔2
−

2 𝛺 𝜔

𝑠2+𝜔2
∑

𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1   

∑ (−𝜈𝑟𝛼
2)𝑠1 ∑

(−𝛬𝜒)𝑠2𝛤(𝑠1+𝑠2)

𝑠2!𝛤(𝑠1)𝑠𝑠1−𝑠2𝜒
∞
𝑠2=0

∞
𝑠1=0 ,                                  (23) 

�̅�2(𝑟, 𝑠) =
𝑈𝜔

𝑠2+𝜔2
−

2 𝑈 𝜔

𝑅(𝑠2+𝜔2)
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)
∞
𝛽=1   

∑ (−𝜈𝑟𝛼
2)𝑠1 ∑

(−𝛬𝜒)𝑠2𝛤(𝑠1+𝑠2)

𝑠2!𝛤(𝑠1)𝑠𝑠1−𝑠2𝜒
∞
𝑠2=0

∞
𝑠1=0 ,                                   (24) 

 

inverting Eqs. 23-24 by means of Laplace transform 
and using theorem of convolution product, we have 
final form of velocities in terms of Fox-H function as  
 

𝑢1(𝑟, 𝑡) = 𝑟Ω𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) −

2Ω𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
×

H1,3
1,1 [ (−

𝛬𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿,                              (25) 

𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) −
2𝑈𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛽

2)
𝑠1∞

𝑠1=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)
𝑡

0
×

𝐻1,3
1,1 [ (−

𝛬𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1)

 ] 𝑑𝛿                               (26) 

 

where, 𝐻𝑗,𝑘+1
1,𝑗 (𝑍) is generalized Fox H-function 

defined as (Abro et al., 2017b; Abro et al., 2017c)  
 

𝑡𝑛 ∑
(−Φ)𝑝 ∏ Γ(𝑖𝑘+𝐼𝑘𝑝)𝑚

𝑘=1

𝑝! ∏ Γ(𝑗𝑘+𝐽𝑘𝑝)𝑛
𝑘=1

∞
𝑝 =

𝑯𝑚,𝑛+1
1,𝑚 [Φ |

(1 − 𝑖1, 𝐼1), (1 − 𝑖2, 𝐼2), … , (1 − 𝑖𝑚, 𝐼𝑀)

(0,1), (1 − 𝑗1, 𝐽1), (1 − 𝑗2, 𝐽2), … , (1 − 𝑗𝑛, 𝐽𝑁)
].  

               (27) 

3.2. Shear stress  

Applying Laplace transform on Eqs. 14-15 and 
keeping in mind Eqs. 10-11, we arrive at 

𝜏1̅(𝑟, 𝑠) = 𝜇(1 + Λ𝜒𝑠𝜒)−1 (
𝜕𝑢1(𝑟,𝑠)

𝜕𝑟
−

𝑢1(𝑟,𝑠)

𝑟
),                      (28) 

𝜏̅2(𝑟, 𝑠) = 𝜇(1 + Λ𝜒𝑠𝜒)−1 𝜕𝑢2(𝑟,𝑠)

𝜕𝑟
,                   (29) 

 
substituting Appendix A (A7) and (A8) and using 
facts of Bessel’s function 𝐽0(𝑟𝑟𝛼) = −𝑟𝛼𝐽1(𝑟𝑟𝛼) also 

𝑟𝑟𝛽𝐽1
′ (𝑟𝑟𝛽) − 𝐽1(𝑟𝑟𝛽) = −𝑟𝑟𝛽𝐽2(𝑟𝑟𝛽) in Eqs. 28-29, we 

obtain simplified form as 
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𝜏1̅(𝑟, 𝑠) = 2𝜇Ωω ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0   

∑ (−Λ𝜒)𝑠3∞
𝑠3=0 ∑

(−Λ𝜒)𝑠2Γ(𝑠1+𝑠2)𝜔

𝑠2!Γ(𝑠1)(𝑠2+𝜔2)𝑠𝑠1−𝑠2𝜒−𝑠3𝜒
∞
𝑠2=0 ,                   (30) 

𝜏̅2(𝑟, 𝑠) =
2𝜇𝑈𝜔

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛽

2)
𝑠1∞

𝑠1=0   

∑ (−Λ𝜒)𝑠3∞
𝑠3=0 ∑

(−Λ𝜒)𝑠2Γ(𝑠1+𝑠2)𝜔

𝑠2!Γ(𝑠1)(𝑠2+𝜔2)𝑠𝑠1−𝑠2𝜒−𝑠3𝜒
∞
𝑠2=0 ,                  (31) 

 
inverting Eqs. 30-31 by means of Laplace transform 
and using theorem of convolution product, we have 
final form of shear stresses in terms of Fox-H 
function as 

 

𝜏1(𝑟, 𝑡) = 2Ω𝐻(𝑡)ω𝜇 ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0   

∑ (−Λ𝜒)𝑠3∞
𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
×

𝐇1,3
1,1 [ (−

Λ𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿                 (32) 

𝜏2(𝑟, 𝑡) =
2𝑈𝐻(𝑡)𝜔𝜇

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0   

∑ (−Λ𝜒)𝑠3∞
𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
  ×

𝐇1,3
1,1 [ (−

Λ𝜒

𝑡𝜒)
𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿.                   (33) 

 
 Case-II: For cosine oscillations: Implementing 

identical algorithm, we also investigated the 
analytical solutions of cosine oscillations as 

 
𝑢1(𝑟, 𝑡) = 𝑟Ω𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −

2Ω𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)

𝑡

0
  ×

𝐇1,3
1,1 [ (−

𝛬𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿.                 (34) 

𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −
2𝑈𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛽

2)
𝑠1∞

𝑠1=0 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)
𝑡

0
×

𝑯1,3
1,1 [ (−

𝛬𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1)

 ] 𝑑𝛿.                              (35) 

𝜏1(𝑟, 𝑡) =

2Ω𝐻(𝑡)ω𝜇 ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∑ (−Λ𝜒)𝑠3∞

𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −
𝑡

0

𝛿) × 𝐇1,3
1,1 [ (−

Λ𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿,                    (36) 

𝜏2(𝑟, 𝑡) =
2𝑈𝐻(𝑡)𝜔𝜇

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∑ (−Λ𝜒)𝑠3∞

𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −
𝑡

0

𝛿) × 𝐇1,3
1,1 [ (−

Λ𝜒

𝑡𝜒
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−𝜒)

(1−𝑠1,1) 

 ] 𝑑𝛿.                    (37) 

4. Special solutions 

4.1. Solutions of Maxwell fluid for ordinary 
differential operator  

Case-I: For sine oscillations: In order to retrieve 
the solutions for sine and cosine oscillations, we 
substitute 𝜒 → 1 in Eqs. 25-26, 34-35 and Eqs. 32-33, 
36-37, we arrive  
 

𝑢1(𝑟, 𝑡) = 𝑟Ω𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) −

2Ω𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
 ×

𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿,                  (38) 

𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡) −
2𝑈𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∑ (−𝜈𝑟𝛽

2)
𝑠1∞

𝑠1=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)
𝑡

0
×

𝑯1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1)

 ] 𝑑𝛿.                                (39) 

𝜏1(𝑟, 𝑡) =

2Ω𝐻(𝑡)ω𝜇 ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∑ (−Λ)𝑠3∞

𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −
𝑡

0

𝛿)     × 𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿,                  (40) 

𝜏2(𝑟, 𝑡) =
2𝑈𝐻(𝑡)𝜔𝜇

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)
∞
𝛽=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∑ (−Λ)𝑠3∞

𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −
𝑡

0

𝛿) × 𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿.                      (41) 

 

 Case-II: For cosine oscillations 
 

𝑢1(𝑟, 𝑡) = 𝑟Ω𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −

2Ω𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)

𝑡

0
×

𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿,                  (42) 

𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) 𝑐𝑜𝑠(𝜔𝑡) −
2𝑈𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)
∞
𝛽=1 ∑ (−𝜈𝑟𝛽

2)
𝑠1∞

𝑠1=0 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)
𝑡

0
×

𝑯1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1)

 ] 𝑑𝛿.                 (43) 

𝜏1(𝑟, 𝑡) =

2Ω𝐻(𝑡)ω𝜇 ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∑ (−𝜈𝑟𝛼

2)𝑠1∞
𝑠1=0 ∑ (−Λ)𝑠3∞

𝑠3=0 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −
𝑡

0

𝛿)    × 𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿,                  (44) 

𝜏2(𝑟, 𝑡)

=
2𝑈𝐻(𝑡)𝜔𝜇

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)

∞

𝛽=1

∑ (−𝜈𝑟𝛼
2)𝑠1

∞

𝑠1=0

∑ (−Λ)𝑠3

∞

𝑠3=0

∫ 𝑠𝑖𝑛 𝜔(𝑡

𝑡

0

− 𝛿) 

 × 𝐇1,3
1,1 [ (−

𝛬

𝑡
)

𝑠2

|
(0,1),(1−𝑠1,0),(1−𝑠1,−1)

(1−𝑠1,1) 

 ] 𝑑𝛿.                  (45) 

4.2. Solutions of Newtonian fluid  

 Case-I: For sine oscillations: In order to retrieve 
the solutions for sine and cosine oscillations, we 
substitute Λ → 0 in Eqs. 25-26, 34-35 and Eqs. 32-
33, 36-37, we obtained Newtonian solutions 

 

𝑢1(𝑟, 𝑡) = 𝑟𝛺𝐻(𝑡) sin(𝜔𝑡) −

2𝛺𝜔𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
𝐸𝑥𝑝(−𝜈𝑟𝛼

2)𝑡 𝑑𝛿,   

                                  (46) 
𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) sin(𝜔𝑡) −
2𝑈𝜔𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∫ 𝑠𝑖𝑛 𝜔(𝑡 − 𝛿)

𝑡

0
𝐸𝑥𝑝(−𝜈𝑟𝛼

2)𝑡 𝑑𝛿,   

                                  (47) 

𝜏1(𝑟, 𝑡) = 2𝜇𝛺𝜔𝐻(𝑡) ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −

𝑡

0

𝛿) 𝐸𝑥𝑝(−𝜈𝑟𝛼
2)𝑡 𝑑𝛿, (48) 

𝜏2(𝑟, 𝑠) =
2𝜇𝑈𝜔𝐻(𝑡)

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)
∞
𝛽=1 ∫ 𝑠𝑖𝑛 𝜔(𝑡 −

𝑡

0

𝛿) 𝐸𝑥𝑝(−𝜈𝑟𝛼
2)𝑡 𝑑𝛿      (49) 

 
 Case-II: For cosine oscillations 

 
𝑢1(𝑟, 𝑡) = 𝑟𝛺𝐻(𝑡) cos(𝜔𝑡) −

2𝛺𝐻(𝑡) ∑
𝐽1(𝑟𝑟𝛼)

𝑟𝛼𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)

𝑡

0
𝐸𝑥𝑝(−𝜈𝑟𝛼

2)𝑡 𝑑𝛿  

                                                      (50) 



Abro et al/ International Journal of Advanced and Applied Sciences, 4(10) 2017, Pages: 97-105 

101 
 

𝑢2(𝑟, 𝑡) = 𝑈𝐻(𝑡) cos(𝜔𝑡) −
2𝑈𝐻(𝑡)

𝑅
∑

𝐽0(𝑟𝑟𝛽)

𝑟𝛽𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∫ 𝑐𝑜𝑠 𝜔(𝑡 − 𝛿)

𝑡

0
𝐸𝑥𝑝(−𝜈𝑟𝛼

2)𝑡 𝑑𝛿,                  

                                   (51) 

𝜏1(𝑟, 𝑡) = 2𝜇𝛺𝐻(𝑡) ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1 ∫ 𝑐𝑜𝑠 𝜔(𝑡 −

𝑡

0

𝛿) 𝐸𝑥𝑝(−𝜈𝑟𝛼
2)𝑡 𝑑𝛿,                      (52) 

𝜏2(𝑟, 𝑠) =
2𝜇𝑈𝐻(𝑡)

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)

∞
𝛽=1 ∫ 𝑐𝑜𝑠 𝜔(𝑡 −

𝑡

0

𝛿) 𝐸𝑥𝑝(−𝜈𝑟𝛼
2)𝑡 𝑑𝛿.                         (53) 

 
It is also worth pointed out that our general 

solutions can also be retrieved for ordinary 
Newtonian fluid when relaxation time (Λ𝜒 = 0) is 
zero and fractional parameter (𝜒 = 1) is assumed to 
be equal to one Fetecau et al. (2008). In continuation, 
the solution obtained by Fetecau et al. (2008) can be 
retrieved by substituting 𝜔 = 0 in Eqs. 46-49 or Eqs. 
50-53.  

5. Numerical results and discussions 

In this portion, our purpose is to analyze few 
rheological parameters for helical flow of 
fractionalized viscoelastic fluid in helically moved 
cylinder numerically. The cylinder starts to oscillate 
and rotate about its axis with angular as well as 
oscillating velocities corresponding with shear 
stresses.  

The exact solutions are investigated for both 
velocities and shear stresses along with imposed 

conditions 𝑢1(𝑟, 0) = 𝑢2(𝑟, 0) =
𝜕𝑢1(𝑟,0)

𝜕𝑡
=

𝜕𝑢2(𝑟,0)

𝜕𝑡
= 0 

and 𝑢1(𝑅, 𝑡) = 𝑅Ω𝐻(𝑡) 𝑠𝑖𝑛(𝜔𝑡)  or  𝑐𝑜𝑠 (𝜔𝑡), and 
𝑢2(𝑅, 𝑡) = 𝑈𝐻(𝑡)𝑠𝑖𝑛𝜔𝑡/𝑐𝑜𝑠𝜔𝑡. The general solutions 

are presented in terms Fox H-function 𝑯𝑗,𝑘+1
1,𝑗 (𝑍) 

with few particular cases, namely fractionalized 
second grade, ordinary second grade, ordinary 
Maxwell fluid and Newtonian fluid. Under these 
circumstances, the rheology is considered with 
distinct parameters and material limitations.  

In order to have an insight of physical 
interpretation for helically moved cylinder, the 
graphical analysis is depicted for knowing the 
hidden differences and similarities on fluid flow. 
However, the major outcomes are enumerated 
below: 

 
 Fig. 2 is prepared for the influences of time 

parameter on angular velocity 𝑢1(𝑟, 𝑡) and 
oscillating velocity 𝑢2(𝑟, 𝑡). Both velocities have 
qualitatively identical behavior for increase in time 
𝑡. It is found that angular velocity 𝑢1(𝑟, 𝑡) has 
sequestrating behavior and oscillating velocity 
𝑢2(𝑟, 𝑡) has smattering behavior on the whole 
domain of cylinder surface.  

 

 
Fig. 2: Plot of angular and oscillating velocities for 𝑡 

 
Fig. 3 is depicted to show the effects of viscosity 

parameter 𝜈 on angular velocity 𝑢1(𝑟, 𝑡) and 
oscillating velocity 𝑢2(𝑟, 𝑡). It is noticed that that as 
viscosity increase; both velocities have oscillating 
behavior of fluid flow in scattering manners. It is 
also pointed out that oscillating velocity 𝑢2(𝑟, 𝑡) 
has dominant behavior of flow in comparison with 
angular velocity 𝑢1(𝑟, 𝑡). 

 Fig. 4 is plotted for amplitude 𝜔 of angular velocity 
𝑢1(𝑟, 𝑡) and oscillating velocity 𝑢2(𝑟, 𝑡), as expected 
the periodic response of fluid flow over the 

boundary of circular cylinder is observed.  It is also 
clear that both velocities have distinct fluctuations; 
this may be due to the fact of imposed boundary 
conditions.   

 The variation of radius of circular cylinder is 
displayed in Fig. 5 with range 0.1, 0.2, 0.3. It is 
noted that both velocities have oscillating behavior 
within insignificant interval. Also, it is observed 
that an angular velocity has shorter oscillations in 
comparison with oscillating velocity. 
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Fig. 3: Plot of angular and oscillating velocities for 𝜈 

 

 
Fig. 4: Plot of angular and oscillating velocities for 𝜔 

 

 
Fig. 5: Plot of angular and oscillating velocities for 𝑟 

 
 Fig. 6 explains the hidden phenomenon of 

fractional parameter 𝜒 on both angular and 
oscillating velocities. Here, the behavior of both 
velocities is quite identical to each other. It is 
pointed out that oscillating velocity 𝑢2(𝑟, 𝑡) moves 
rapidly in comparison with angular velocity 
𝑢1(𝑟, 𝑡). This may be due to fact of fractional order 

derivatives which examines the complete 
description of the memory effectively.   

 Figs. 7 and 8 are drawn for the comparison of three 
ordinary as well as fractional models i-e (i) 
fractional and ordinary Maxwell fluid, (ii) fractional 
and ordinary second grade fluid and (iii) fractional 
and ordinary Newtonian fluid. In both figures, 
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angular velocity 𝑢1(𝑟, 𝑡) and oscillating velocity 
𝑢2(𝑟, 𝑡) has opposite trend for fluid flow. It is 
observed that ordinary Newtonian fluid moves 
faster in angular velocity 𝑢1(𝑟, 𝑡) and ordinary 
Maxwell moves faster in oscillating velocity. On the 
other hand, fractional Newtonian fluid moves 
faster in angular velocity 𝑢1(𝑟, 𝑡) and fractional 

Maxwell moves faster in oscillating velocity. In 
brevity, a kingpin point in this comparison is the 
reciprocal behavior of fluid flows is observed 
either in ordinary models or in fractional models. 
The same phenomenon can be analyzed for shear 
stresses as well.  

 
Fig. 6: Plot of angular and oscillating velocities for 𝜒 

 

 
Fig. 7: Comparison of angular and oscillating velocities for three ordinary models 

 

 
Fig. 8: Comparison of angular and oscillating velocities for three fractional models 
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Appendix A. Finite Hankel transform 

∫ (
𝜕2 𝑢1̅̅̅̅

𝜕𝑟2
𝑟𝐽1(𝑟𝑟𝛼) +

𝜕 𝑢1̅̅̅̅

𝜕𝑟
𝐽1(𝑟𝑟𝛼) + 𝑢1̅̅ ̅𝐽1(𝑟𝑟𝛼)) 𝑑𝑟 =

𝑅

0

(𝑅𝑟𝛼𝐽2(𝑅𝑟𝛼) − 𝑟𝛼
2)𝑢1𝐻̅̅ ̅̅ ̅(𝑟𝛼 , 𝑡),                  (A1) 

∫ (
𝜕2𝑢2̅̅̅̅

𝜕𝑟2
𝑟𝐽0(𝑟𝑟𝛽) +

𝜕𝑢2̅̅̅̅

𝜕𝑟
𝐽0(𝑟𝑟𝛽)) 𝑑𝑟 = (𝑅𝑟𝛽𝐽1(𝑅𝑟𝛽) −

𝑅

0

𝑟𝛽
2)𝑢2𝐻

̅̅ ̅̅ ̅(𝑟𝛽, 𝑡)                    (A2) 

�̅�1𝐻(𝑟𝛼 , 𝑠) = ∫  �̅�1𝐻(𝑟𝛼 , 𝑠) 𝑟 𝐽1(𝑟𝑟𝛼)𝑑𝑟,
𝑅

0
                (A3) 

�̅�2𝐻(𝑟𝛽, 𝑠) = ∫ �̅�2𝐻(𝑟𝛽, 𝑠) 𝑟 𝐽0(𝑟𝑟𝛽)𝑑𝑟,
𝑅

0
                 (A4) 

�̅�1(𝑟, 𝑠) =
2

𝑅2
∑ �̅�1𝐻(𝑟𝛼 , 𝑠)

𝐽1(𝑅𝑟𝛼)

𝐽2
2(𝑅𝑟𝛼)

∞
𝛼=1  ,   �̅�2(𝑟, 𝑠) =

2

𝑅2
∑ �̅�2𝐻(𝑟𝛽, 𝑠)

𝐽0(𝑅𝑟𝛽)

𝐽1
2(𝑅𝑟𝛽)

∞
𝛽=1 ,                  (A5) 

𝑅2𝐽2(𝑅𝑟𝛼)

𝑟𝛼
= ∫ 𝐽1(𝑟𝑟𝛼)𝑟2 𝑑𝑟

𝑅

0
    and    

𝑅𝐽1(𝑅𝑟𝛽)

𝑟𝛽
=

∫ 𝐽0(𝑟𝑟𝛽)𝑟 𝑑𝑟
𝑅

0
,                   (A6) 

𝜕𝑢1(𝑟,𝑠)

𝜕𝑟
−

1

𝑟
�̅�1(𝑟, 𝑠) =

2𝛺𝜔 ∑
𝐽2(𝑟𝑟𝛼)

𝐽2(𝑅𝑟𝛼)
∞
𝛼=1

(𝑠+𝛬𝜒𝑠𝜒+1)

𝑠2(𝛬𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽
2)+𝜔2(𝛬𝜒𝑠1+𝜒+𝑠+𝜈𝑟𝛽

2)
,         (A7) 

𝜕�̅�1(𝑟,𝑠)

𝜕𝑟
=

2𝑈𝜔

𝑅
∑

𝐽1(𝑟𝑟𝛽)

𝐽1(𝑅𝑟𝛽)
∞
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